Chapter 1

Introduction
Focus of the Course

• Object-Oriented Software Development
 ▪ problem solving
 ▪ program design, implementation, and testing
 ▪ object-oriented concepts
 • classes
 • objects
 • encapsulation
 • inheritance
 • polymorphism
 ▪ graphical user interfaces
 ▪ the Java programming language
Introduction

- We first need to explore the fundamentals of computer processing

- Chapter 1 focuses on:
 - components of a computer
 - how those components interact
 - how computers store and manipulate information
 - computer networks
 - the Internet and the World Wide Web
 - programming and programming languages
 - an introduction to Java
 - an overview of object-oriented concepts
Outline

- Computer Processing
- Hardware Components
- Networks
- The Java Programming Language
- Program Development
- Object-Oriented Programming
Hardware and Software

- **Hardware**
 - the physical, tangible parts of a computer
 - keyboard, monitor, disks, wires, chips, etc.

- **Software**
 - programs and data
 - a *program* is a series of instructions

- A computer requires both hardware and software

- Each is essentially useless without the other
CPU and Main Memory

- Chip that executes program commands
 - Intel Pentium 4
 - Sun ultraSPARC III

Central Processing Unit

Main Memory

Primary storage area for programs and data that are in active use

Synonymous with RAM
Secondary Memory Devices

Secondary memory devices provide long-term storage

Central Processing Unit

Information is moved between main memory and secondary memory as needed

Main Memory

Hard disks
Floppy disks
ZIP disks
Writable CDs
Writable DVDs
Tapes

Hard Disk
Floppy Disk
Input / Output Devices

I/O devices facilitate user interaction

Central Processing Unit

Monitor

Keyboard

Main Memory

Hard Disk

Floppy Disk

Monitor screen
Keyboard
Mouse
Joystick
Bar code scanner
Touch screen
Software Categories

• Operating System
 ▪ controls all machine activities
 ▪ provides the user interface to the computer
 ▪ manages resources such as the CPU and memory
 ▪ Windows XP, Unix, Linux, Mac OS

• Application program
 ▪ generic term for any other kind of software
 ▪ word processors, missile control systems, games

• Most operating systems and application programs have a \textit{graphical user interface (GUI)}
Analog vs. Digital

- There are two basic ways to store and manage data:

 - **Analog**
 - continuous, in direct proportion to the data represented
 - music on a record album - a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker

 - **Digital**
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc - the disc stores numbers representing specific voltage levels sampled at specific times
Digital Information

• Computers store all information digitally:
 ▪ numbers
 ▪ text
 ▪ graphics and images
 ▪ video
 ▪ audio
 ▪ program instructions

• In some way, all information is *digitized* - broken down into pieces and represented as numbers
Representing Text Digitally

• For example, every character is stored as a number, including spaces, digits, and punctuation

• Corresponding upper and lower case letters are separate characters

Hi, Heather.

72 105 44 32 72 101 97 116 104 101 114 46
Binary Numbers

• Once information is digitized, it is represented and stored in memory using the binary number system.

• A single binary digit (0 or 1) is called a bit.

• Devices that store and move information are cheaper and more reliable if they have to represent only two states.

• A single bit can represent two possible states, like a light bulb that is either on (1) or off (0).

• Permutations of bits are used to store values.
Bit Permutations

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>010</td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>011</td>
<td>0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
<td>0101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>0110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>0111</td>
</tr>
</tbody>
</table>

Each additional bit doubles the number of possible permutations
Bit Permutations

- Each permutation can represent a particular item
- There are 2^N permutations of N bits
- Therefore, N bits are needed to represent 2^N unique items

How many items can be represented by

<table>
<thead>
<tr>
<th>Bits</th>
<th>Representation</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2^2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2^3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>2^5</td>
<td>32</td>
</tr>
</tbody>
</table>
Outline

- Computer Processing
- Hardware Components
- Networks
- The Java Programming Language
- Program Development
- Object-Oriented Programming
A Computer Specification

- Consider the following specification for a personal computer:
 - 2.8 GHz Pentium 4 Processor
 - 512 MB RAM
 - 80 GB Hard Disk
 - 48x CD-RW / DVD-ROM Combo Drive
 - 17” Video Display with 1280 x 1024 resolution
 - 56 Kb/s Modem

- What does it all mean?
Main memory is divided into many memory locations (or *cells*).

Each memory cell has a numeric *address*, which uniquely identifies it.
Storing Information

Each memory cell stores a set number of bits (usually 8 bits, or one byte)

Large values are stored in consecutive memory locations
Storage Capacity

- Every memory device has a *storage capacity*, indicating the number of bytes it can hold.

- Capacities are expressed in various units:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Number of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilobyte</td>
<td>KB</td>
<td>$2^{10} = 1024$</td>
</tr>
<tr>
<td>megabyte</td>
<td>MB</td>
<td>2^{20} (over 1 million)</td>
</tr>
<tr>
<td>gigabyte</td>
<td>GB</td>
<td>2^{30} (over 1 billion)</td>
</tr>
<tr>
<td>terabyte</td>
<td>TB</td>
<td>2^{40} (over 1 trillion)</td>
</tr>
</tbody>
</table>
Memory

- Main memory is *volatile* - stored information is lost if the electric power is removed
- Secondary memory devices are *nonvolatile*
- Main memory and disks are *direct access* devices - information can be reached directly
- The terms *direct access* and *random access* often are used interchangeably
- A magnetic tape is a *sequential access* device since its data is arranged in a linear order - you must get by the intervening data in order to access other information
RAM vs. ROM

- *RAM* - Random Access Memory (direct access)
- *ROM* - Read-Only Memory

The terms RAM and main memory are basically interchangeable.

ROM could be a set of memory chips, or a separate device, such as a CD ROM.

Both RAM and ROM are random (direct) access devices!

RAM probably should be called Read-Write Memory.
Compact Discs

• A CD-ROM is portable read-only memory

• A microscopic pit on a CD represents a binary 1 and a smooth area represents a binary 0

• A low-intensity laser reflects strongly from a smooth area and weakly from a pit

• A CD-Recordable (CD-R) drive can be used to write information to a CD once

• A CD-Rewritable (CD-RW) can be erased and reused

• The speed of a CD drive indicates how fast (max) it can read and write information to a CD
DVDs

- A DVD is the same size as a CD, but can store much more information
- The format of a DVD stores more bits per square inch
- A CD can store 650 MB, while a standard DVD can store 4.7 GB
 - A double sided DVD can store 9.4 GB
 - Other advanced techniques can bring the capacity up to 17.0 GB
- Like CDs, there are DVD-R and DVD-RW discs
The Central Processing Unit

- A CPU is on a chip called a *microprocessor*
- It continuously follows the *fetch-decode-execute cycle:*

 - **fetch**: Retrieve an instruction from main memory
 - **decode**: Determine what the instruction is
 - **execute**: Carry out the instruction
The Central Processing Unit

- The CPU contains:
 - Arithmetic / Logic Unit: Performs calculations and makes decisions
 - Control Unit: Coordinates processing steps
 - Registers: Small storage areas
The Central Processing Unit

- The speed of a CPU is controlled by the *system clock*
- The system clock generates an electronic pulse at regular intervals
- The pulses coordinate the activities of the CPU
- The speed is usually measured in *gigahertz (GHz)*
Monitor

- The size of a monitor (17") is measured diagonally, like a television screen.
- Most monitors these days have *multimedia* capabilities: text, graphics, video, etc.
- A monitor has a certain maximum *resolution*, indicating the number of picture elements, called *pixels*, that it can display (such as 1280 by 1024).
- High resolution (more pixels) produces sharper pictures.
Modem

- *Data transfer devices* allow information to be sent and received between computers

- Many computers include a modulator-demodulator or *modem*, which allows information to be moved across a telephone line

- A data transfer device has a maximum *data transfer rate*

- A modem, for instance, may have a data transfer rate of 56,000 *bits per second* (bps)
Outline

Computer Processing
Hardware Components
Networks
The Java Programming Language
Program Development
Object-Oriented Programming
Networks

- A *network* is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own *network address*, which uniquely identifies it among the others
- A *file server* is a network computer dedicated to storing programs and data that are shared among network users
Network Connections

• Each computer in a network could be directly connected to every other computer in the network

• These are called *point-to-point* connections

Adding a computer requires a new communication line for each computer already in the network

This technique is not practical for more than a few close machines
Network Connections

- Most networks share a single communication line.
- Adding a new computer to the network is relatively easy.

Network traffic must take turns using the line, which introduces delays. Often information is broken down in parts, called packets, which are sent to the receiving machine and then reassembled.
Local-Area Networks

A Local-Area Network (LAN) covers a small distance and a small number of computers.

A LAN often connects the machines in a single room or building.
A Wide-Area Network (WAN) connects two or more LANs, often over long distances.

A LAN usually is owned by one organization, but a WAN often connects groups in different countries.
The Internet

- The *Internet* is a WAN which spans the entire planet

- The word Internet comes from the term *internetworking*

- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA) - originally it was called the ARPANET

- The Internet grew quickly throughout the 1980s and 90s
TCP/IP

- A protocol is a set of rules that determine how things communicate with each other.

- The software which manages Internet communication follows a suite of protocols called TCP/IP.

- The *Internet Protocol* (IP) determines the format of the information as it is transferred.

- The *Transmission Control Protocol* (TCP) dictates how messages are reassembled and handles lost information.
IP and Internet Addresses

- Each computer on the Internet has a unique *IP address*, such as:

 204.192.116.2

- Most computers also have a unique Internet name, which also is referred to as an *Internet address*:

 spencer.villanova.edu
 kant.gestalt-llc.com

- The first part indicates a particular computer (*spencer*)

- The rest is the *domain name*, indicating the organization (*villanova.edu*)
Domain Names

- The last part of a domain name, called a *top-level domain* (TLD), indicates the type of organization:

 - edu - educational institution
 - com - commercial entity
 - org - non-profit organization
 - net - network-based organization

Sometimes the suffix indicates the country:

- uk - United Kingdom
- au - Australia
- ca - Canada
- se - Sweden

New TLDs have recently been added:

- biz, info, tv, name
Domain Names

• A domain name can have several parts

• Unique domain names mean that multiple sites can have individual computers with the same local name

• When used, an Internet address is translated to an IP address by software called the *Domain Name System* (DNS)

• There is no one-to-one correspondence between the sections of an IP address and the sections of an Internet address
The World Wide Web

• The World Wide Web allows many different types of information to be accessed using a common interface

• A browser is a program which accesses and presents information
 ▪ text, graphics, video, sound, audio, executable programs

• A Web document usually contains links to other Web documents, creating a hypermedia environment

• The term Web comes from the fact that information is not organized in a linear fashion
The World Wide Web

- Web documents are often defined using the *HyperText Markup Language* (HTML)

- Information on the Web is found using a *Uniform Resource Locator* (URL):

 - http://www.lycos.com
 - http://www.villanova.edu/webinfo/domains.html
 - ftp://java.sun.com/applets/animation.zip

- A URL indicates a protocol (http), a domain, and possibly specific documents
Outline

Computer Processing
Hardware Components
Networks
The Java Programming Language
Program Development
Object-Oriented Programming
Java

• A *programming language* specifies the words and symbols that we can use to write a program

• A programming language employs a set of rules that dictate how the words and symbols can be put together to form valid *program statements*

• The Java programming language was created by Sun Microsystems, Inc.

• It was introduced in 1995 and it's popularity has grown quickly since
Java Program Structure

• In the Java programming language:
 ▪ A program is made up of one or more classes
 ▪ A class contains one or more methods
 ▪ A method contains program statements

• These terms will be explored in detail throughout the course

• A Java application always contains a method called main

• See Lincoln.java (page 28)
Java Program Structure

// comments about the class

public class MyProgram
{
 class header

 class body

 Comments can be placed almost anywhere

}
Java Program Structure

// comments about the class
public class MyProgram
{
 // comments about the method
 public static void main (String[] args)
 {
 }
}

method header

method body
Comments

• Comments in a program are called *inline documentation*

• They should be included to explain the purpose of the program and describe processing steps

• They do not affect how a program works

• Java comments can take three forms:

  ```
  // this comment runs to the end of the line
  
  /* this comment runs to the terminating symbol, even across line breaks */
  
  /** this is a javadoc comment */
  ```
Identifiers

- *Identifiers* are the words a programmer uses in a program
- An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign
- Identifiers cannot begin with a digit
- Java is *case sensitive* - Total, total, and TOTAL are different identifiers
- By convention, programmers use different case styles for different types of identifiers, such as
 - *title case* for class names - Lincoln
 - *upper case* for constants - MAXIMUM
Identifiers

- Sometimes we choose identifiers ourselves when writing a program (such as Lincoln).
- Sometimes we are using another programmer's code, so we use the identifiers that they chose (such as println).
- Often we use special identifiers called reserved words that already have a predefined meaning in the language.
- A reserved word cannot be used in any other way.
Reserved Words

• The Java reserved words:

- abstract
- boolean
- break
- byte
- case
- catch
- char
- class
- const
- continue
- default
- do
- double
- else
- enum
- extends
- false
- final
- finally
- float
- for
- goto
- if
- implements
- import
- instanceof
- int
- interface
- long
- native
- new
- null
- package
- private
- protected
- public
- return
- short
- static
- strictfp
- super
- switch
- synchronized
- this
- throw
- throws
- transient
- true
- try
- void
- volatile
- while
White Space

• Spaces, blank lines, and tabs are called *white space*

• *White space is used to separate words and symbols in a program*

• *Extra white space is ignored*

• *A valid Java program can be formatted many ways*

• *Programs should be formatted to enhance readability, using consistent indentation*

• See *Lincoln2.java* (page 34)

• See *Lincoln3.java* (page 35)
Outline

Computer Processing

Hardware Components

Networks

The Java Programming Language

Program Development

Object-Oriented Programming
Program Development

• The mechanics of developing a program include several activities
 ▪ writing the program in a specific programming language (such as Java)
 ▪ translating the program into a form that the computer can execute
 ▪ investigating and fixing various types of errors that can occur

• Software tools can be used to help with all parts of this process
Language Levels

• There are four programming language levels:
 ▪ machine language
 ▪ assembly language
 ▪ high-level language
 ▪ fourth-generation language

• Each type of CPU has its own specific *machine language*

• The other levels were created to make it easier for a human being to read and write programs
Programming Languages

• Each type of CPU executes only a particular machine language

• A program must be translated into machine language before it can be executed

• A compiler is a software tool which translates source code into a specific target language

• Often, that target language is the machine language for a particular CPU type

• The Java approach is somewhat different
Java Translation

• The Java compiler translates Java source code into a special representation called bytecode

• Java bytecode is not the machine language for any traditional CPU

• Another software tool, called an interpreter, translates bytecode into machine language and executes it

• Therefore the Java compiler is not tied to any particular machine

• Java is considered to be architecture-neutral
Java Translation

- Java source code
 - Java compiler
 - Bytecode interpreter
 - Bytecode compiler
 - Machine code
 - Java bytecode
Development Environments

- There are many programs that support the development of Java software, including:
 - Sun Java Development Kit (JDK)
 - Sun NetBeans
 - IBM Eclipse
 - Borland JBuilder
 - MetroWerks CodeWarrior
 - Monash BlueJ

- Though the details of these environments differ, the basic compilation and execution process is essentially the same.
Syntax and Semantics

• The syntax rules of a language define how we can put together symbols, reserved words, and identifiers to make a valid program.

• The semantics of a program statement define what that statement means (its purpose or role in a program).

• A program that is syntactically correct is not necessarily logically (semantically) correct.

• A program will always do what we tell it to do, not what we meant to tell it to do.
Errors

• A program can have three types of errors

• The compiler will find syntax errors and other basic problems (compile-time errors)
 ▪ If compile-time errors exist, an executable version of the program is not created

• A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors)

• A program may run, but produce incorrect results, perhaps using an incorrect formula (logical errors)
Basic Program Development

Edit and save program

Compile program

Execute program and evaluate results

errors

errors
Outline

Computer Processing
Hardware Components
Networks
The Java Programming Language
Program Development
Object-Oriented Programming
Problem Solving

• The purpose of writing a program is to solve a problem

• Solving a problem consists of multiple activities:
 ▪ Understand the problem
 ▪ Design a solution
 ▪ Consider alternatives and refine the solution
 ▪ Implement the solution
 ▪ Test the solution

• These activities are not purely linear – they overlap and interact
Problem Solving

• The key to designing a solution is breaking it down into manageable pieces

• When writing software, we design separate pieces that are responsible for certain parts of the solution

• An *object-oriented approach* lends itself to this kind of solution decomposition

• We will dissect our solutions into pieces called objects and classes
Object-Oriented Programming

• Java is an object-oriented programming language

• As the term implies, an object is a fundamental entity in a Java program

• Objects can be used effectively to represent real-world entities

• For instance, an object might represent a particular employee in a company

• Each employee object handles the processing and data management related to that employee
Objects

• An object has:
 - *state* - descriptive characteristics
 - *behaviors* - what it can do (or what can be done to it)

• The state of a bank account includes its current balance

• The behaviors associated with a bank account include the ability to make deposits and withdrawals

• Note that the behavior of an object might change its state
Classes

• An object is defined by a class
• A class is the blueprint of an object
• The class uses methods to define the behaviors of the object
• The class that contains the main method of a Java program represents the entire program
• A class represents a concept, and an object represents the embodiment of that concept
• Multiple objects can be created from the same class
Objects and Classes

A class
(the concept)

Bank Account

An object
(the realization)

John’s Bank Account
Balance: $5,257

Bill’s Bank Account
Balance: $1,245,069

Mary’s Bank Account
Balance: $16,833

Multiple objects
from the same class
Inheritance

• One class can be used to derive another via *inheritance*

• Classes can be organized into hierarchies
Summary

• Chapter 1 focused on:
 ▪ components of a computer
 ▪ how those components interact
 ▪ how computers store and manipulate information
 ▪ computer networks
 ▪ the Internet and the World Wide Web
 ▪ programming and programming languages
 ▪ an introduction to Java
 ▪ an overview of object-oriented concepts